Conversion of Improper Fractions into Mixed Fractions |Solved Examples


Subscribe to our YouTube channel for the latest videos, updates, and tips.

In conversion of improper fractions into mixed fractions, we follow the following steps:

Step I: Obtain the improper fraction.

Step II: Divide the numerator by the denominator and obtain the quotient and remainder.

Step III: Write the mixed fraction as: Quotient\(\frac{Remainder}{Denominator}\).


To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained will be the numerator of the fractional part. The denominator of the fractional part will be the same as that of the improper fraction i.e.,

Convert Improper Fractions into Mixed Fractions

Conversion of Improper Fractions into Mixed Fractions Video:


Subscribe to our YouTube channel for the latest videos, updates, and tips.

Let us convert \(\frac{7}{5}\) into a mixed number.

As you know
if a fraction has same number as numerator and denominator, it makes a
whole. Here in \(\frac{7}{5}\) we can take out \(\frac{5}{5}\) to make a
whole and the remaining fraction we have is \(\frac{2}{5}\). So,
\(\frac{7}{5}\) can be written in mixed numbers as 1\(\frac{2}{5}\).

Conversion of Improper Fractions into Mixed Fractions

                          \(\frac{5}{5}\) = 1                        +                           \(\frac{2}{5}\)

                                           \(\frac{7}{5}\) = \(\frac{5}{5}\) + \(\frac{2}{5}\) = 1 + \(\frac{2}{5 }\) = 1\(\frac{2}{5}\)

Actually, \(\frac{7}{5}\) means 7 ÷ 5. When we divide 7 by 5 we get 1 as
quotient and 2 as remainder. To convert an improper fraction into a
mixed number we place the quotient 1 as the whole number, the remainder 2
as the numerator and the divisor 5 as the denominator of the proper
fraction.

Improper Fractions into Mixed Fractions

Examples on Conversion of Improper Fractions into Mixed Fractions:

For Example:

1. Express each of the following improper fractions as mixed fractions:

(i) \(\frac{17}{4}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 4, Remainder = 1, Denominator = 4.

Hence, \(\frac{17}{4}\) = 4\(\frac{1}{4}\)

(ii) \(\frac{13}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 2, Remainder = 3, Denominator = 5.

Hence, \(\frac{13}{5}\) = 2\(\frac{3}{5}\)

(iii) \(\frac{28}{5}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 5, Remainder = 3, Denominator = 5

Hence, \(\frac{28}{5}\) = 5\(\frac{3}{5}\).

(iv) \(\frac{28}{9}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 3, Remainder = 1, Denominator = 9

Hence, \(\frac{28}{9}\) = 3\(\frac{1}{9}\).

(v) \(\frac{226}{15}\)

We have,

Conversion of Improper Fractions into Mixed Fractions

Therefore, Quotient = 15, Remainder = 1, Denominator = 15

Hence, \(\frac{226}{15}\) = 15\(\frac{1}{15}\).

2. Convert each of the following improper fractions into mixed numbers.

(i) \(\frac{15}{7}\)

(ii) \(\frac{24}{9}\)

Solution:

(i)

Conversion of Improper Fractions into Mixed Fractions

(ii) 

Conversion of Improper Fractions into Mixed Fractions

Conversion of an Improper Fraction Into a Mixed Fraction:

3. Let us convert \(\frac{22}{5}\) into an mixed fraction.

Divide the numerator 22 by the denominator 5.

Improper Fractions into Mixed Fractions

The quotient 4 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same. So, \(\frac{22}{5}\) = 4\(\frac{2}{5}\)

4. Convert \(\frac{41}{3}\) into mixed fraction.

Divide the numerator 41 by the denominator 3.

Improper to Mixed Fractions

The quotient 13 gives the whole number. The remainder 2 is the numerator of the fractions.

The denominator of the fraction remains the same.

So, \(\frac{41}{3}\) = 13\(\frac{2}{3}\)

Worksheet on Conversion of Improper Fractions into Mixed Fractions:

1. Convert the following into Improper Fractions:

(i) \(\frac{11}{9}\)

(ii) \(\frac{24}{5}\)

(iii) \(\frac{26}{8}\)

(iv) \(\frac{59}{9}\)

(v) \(\frac{64}{7}\)

Answer:

1. (i) 1\(\frac{2}{9}\)

(ii) 4\(\frac{4}{5}\)

(iii) 3\(\frac{2}{8}\)

(iv) 6\(\frac{5}{9}\)

(v) 9\(\frac{1}{7}\)

You might like these

  • To convert a mixed number into an improper fraction, we multiply the whole number by the denominator of the proper fraction and then to the product add the numerator of the fraction to get the numerator of the improper fraction. I
  • The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerator < denominator). Two parts are shaded in the above diagram.
  • In 5th Grade Fractions we will discuss about definition of fraction, concept of fractions and different types of examples on fractions.  A fraction is a number representing a part of a whole. The whole may be a single object or a group of objects.
  • In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.
  • The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with respect to the whole shape in the figures from (i) to (viii)  In; (i) Shaded
  • To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numerators of the fractions.
  • Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example \(\frac{7}{13}\) > \(\frac{2}{13}\) because 7 > 2.  In comparison of like fractions here are some
  •  In comparison of fractions having the same numerator the following rectangular figures having the same lengths are divided in different parts to show different denominators. 3/10 < 3/5 < 3/4 or 3/4 > 3/5 > 3/10   In the fractions having the same numerator, that fraction is
  • In worksheet on comparison of like fractions, all grade students can practice the questions on comparison of like fractions. This exercise sheet on comparison of like fractions can be practiced
  • Like and unlike fractions are the two groups of fractions:  (i) 1/5, 3/5, 2/5, 4/5, 6/5  (ii) 3/4, 5/6, 1/3, 4/7, 9/9  In group (i) the denominator of each fraction is 5, i.e., the denominators of the fractions are equal. The fractions with the same denominators are called

    Like and Unlike Fractions | Like Fractions |Unlike Fractions |Examples

    Like and unlike fractions are the two groups of fractions: (i) 1/5, 3/5, 2/5, 4/5, 6/5 (ii) 3/4, 5/6, 1/3, 4/7, 9/9 In group (i) the denominator of each fraction is 5, i.e., the denominators of the fractions are equal. The fractions with the same denominators are called

  •  Fraction of a whole numbers are explained here with 4 following examples. There are three shapes:  (a) circle-shape  (b) rectangle-shape and  (c) square-shape. Each one is divided into 4 equal parts. One part is shaded, i.e., one-fourth of the shape is shaded and three
  • Representation of a fraction is discussed here. In a simple fraction, there is a horizontal line. Above this line we write a number which is called the numerator. Below this line we write another number which is called the denominator.
  • In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced
  • In representations of fractions on a number line we can show fractions on a number line. In order to represent 1/2 on the number line, draw the number line and mark a point A to represent 1.
  • In comparing unlike fractions, we first convert them into like fractions by using the following steps and then compare them. Step I: Obtain the denominators of the fractions and find their LCM (least common multiple).  Step II:  Each fractions are converted to its equivalent

    Comparing Unlike Fractions | Unlike Fractions | Equivalent Fraction

    In comparing unlike fractions, we first convert them into like fractions by using the following steps and then compare them. Step I: Obtain the denominators of the fractions and find their LCM (least common multiple). Step II: Each fractions are converted to its equivalent

Fraction

Representations of Fractions on a Number Line

Fraction as Division

Types of Fractions

Conversion of Mixed Fractions into Improper Fractions

Conversion of Improper Fractions into Mixed Fractions

Equivalent Fractions

Interesting Fact about Equivalent Fractions

Fractions in Lowest Terms

Like and Unlike Fractions

Comparing Like Fractions

Comparing Unlike Fractions

Addition and Subtraction of Like Fractions

Addition and Subtraction of Unlike Fractions

Inserting a Fraction between Two Given Fractions

Numbers Page

6th Grade Page

From Conversion of Improper Fractions into Mixed Fractions to HOME PAGE


Didn’t find what you were looking for? Or want to know more information
about
Math Only Math.
Use this Google Search to find what you need.







Share this page:
What’s this?



We will be happy to hear your thoughts

Leave a reply

Daily Deals
Logo
Register New Account
Compare items
  • Total (0)
Compare
0
Shopping cart